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Abstract 
 

In this paper we will prove Poncelet’s Theorem for triangles. To be specific, we consider two conics where one 
conic is in interior of the other. We prove the existence conditions for a triangle that is circumscribed about 

interior conic, and also inscribed in the exterior conic. Moreover, we show that if the conditions are satisfied, 

then there exist infinitely many such triangles. Our approach consists of tow steps: first, we give an explicit 

condition for a line through two points on the exterior conic to be tangent to interior; then we prove the existence 
of Poncelet’s triangles by using concept of resultant. 
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1. Intoduction 
 

Jean-Victor Poncelet (1788-1867) was a French engineer and mathematician who regenerated and made 

tremendous input into projective geometry. One of his well knowand important works for projective geometry 
was a Poncelet’s Closure Theorem also known as Poncelet’s Porism, which states:“Suppose that E0 is an ellipse in 

the plane and E1 is another ellipse that contains E0 in its interior. If there is one n-gon P that is both inscribed in E1 

and circumscribed about E0, then there is an infinite number of such n-gons. (In fact, any point on E1 is a vertex of 
exactly one such n-gon.)”[1] 
 

Poncelet used synthetic approach of proving Poncelet’s Porism.  The synthetic style of proofs became 

predominant in projective geometry in 19
th
 century.Poncelet proved his theorem in 1813, and since that time 

Poncelet’s Theorem was re-approached and proven again by many others. For instance, Jacobi proved Poncelet’s 

Porism in 1828. In modern days, Griffiths and Harris have been proved Poncelet’s Theorem in 1977. Their proof 

was done in algebro-geometrical manner.[3] 
 

Special cases of Poncelet’s Porism have been derived many years before the actual prove.For instance, Fuss 

derived formulas for cases of bicentric quadrilateral, pentagon, hexagon, heptagon, and octagon in 1792. 
 

In this paper we will approach Poncelet’s Porism for n=3 from a different prospective. In order to derive the 

proof, we will use concept of resultant, which is an important tool in Elimination Theory.  
 

2. Background Information 
 

Before we will approach the proof of the Poncelet’s triangle, let’s look at some definitions and properties of 
Resultant.  
 

Definition1. [2] Given polynomials f, g∈ k[x] of degree l and m of the form: 
 

 f=a0x
l
+…+al, where a0≠0, g=b0xm+…+bm, where b0≠0.    

 

Then the Sylvester matrix of f and g with respect to x is denoted Syl(f, g, x),  is the coefficient matrix of the 

following (l+m)×(l+m) matrix: 
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The resultant of f and g with respect to x, denoted Res(f, g, x), is the determinant of the Sylvester matrix. Thus, 
Res(f, g, x )=det(Syl(f, g, x)). 
 

Property of Resultant 2. [2] 
 

Given f, g∈k[x] of positive degree, the resultant  

Res(f, g, x ) ∈ k is an integer polynomial in the coefficients of f and g. Furthermore, f and g have a common factor 
in k[x] if and only if Res(f, g, x)=0. 
 

Property of Resultant 3. [2] 
 

Let f, g ∈ k[x1,…, xn] have positive degree in x1. Then: 

(i) Res(f, g, x1 ) is the first elimination ideal <f, g>∩k[x2,…, xn]. 

(ii) Res(f, g, x1 )=0 if and only if f and g havea common factor in k[x1,…, xn] which haspositive degree in x1. 
 

Definition 4.[4]If C, D are different conics, and P1 is any point on C, one can draw a tangent line on l0 to from C 

to D. Let P1 be the point at which l0 meets C again. Repeating this, we have for any positive integer m a sequence 

of points P0, …,  Pmin C, li =PiPi+1for 0≤ 𝑖 ≤ 𝑚. This sequence is called Poncelet’s chain of length m. 

The tangent lines define an algebraic correspondence T on C: 
 

 T={(P, Q) ∈ C × C :l = PQ ∈ D
*
 = the set of tangents of D}. 

 

Figure 1 shows a Poncelet’s chain of length three, or Poncelet’s triangle. 

 

 

Poncelet's 3 Chain - Poncelet's Triangle
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Theorem 5. [4] If two conics C, D in ℙ2
 are defined by  

C :𝑦 = 𝑥2 , and D : 𝑐1𝑥
2 + 𝑐3𝑥𝑦 + 𝑐2𝑦

2 + 𝑐4𝑥 + 𝑐5𝑦 + 𝑐6=0 

Then the algebraic correspondence T on D0 is defined by A1(𝑥, 𝑧) = 0, where A(𝑥, 𝑧) = 𝑎6 + 𝑎4𝑥𝑧 + 𝑎1𝑥
2𝑧2 +

𝑎5 𝑥 + 𝑧 + 𝑎2𝑥𝑧 𝑥 + 𝑧 + 𝑎3(𝑥 + 𝑧)2, 
where 

𝑎1 = −4𝑐1𝑐2 + 𝑐3
2, 𝑎2 = −2(2𝑐2𝑐4 + 𝑐3𝑐5),𝑎3 = 𝑐5

2 − 4𝑐2𝑐6, 

𝑎4 = −2𝑐3𝑐4 − 𝑐1𝑐5, 𝑎5 = 2(𝑐4𝑐5 + 2𝑐3𝑐6),𝑎6 = 𝑐4
2 − 4𝑐1𝑐6.       

  

Proof:Let C and D be two conics.Let P∈ C be a point.Draw a tangent line l form P to D, and let Q be the point of 

intersection l∩C.  If P∈ C ∩ D, then Q = P, otherwise, Q≠P.Let’s draw two tangent lines 𝑙1, 𝑙1
′  from P, and obtain 

two points Q1, Q1
′ .Thus P→{Q1, Q1

′ } defines the algebraic correspondence T on C: 
 

   T={(P, Q) ∈ C × C :l = PQ ∈ D
*
 }. 

 

Now, our goal is to find the defining equation of T.For simplicity, let C :𝑦 = 𝑥2 , and D : 𝑐1𝑥
2 + 𝑐2𝑦

2 + 𝑐3𝑥𝑦 +

𝑐4𝑥 + 𝑐5𝑦 + 𝑐6 =0. Then line l through points P=(u, u
2
) and Q=(v, v

2
) on C, tangent to D has slope of

𝑢2−𝑣2

𝑢−𝑣
=

(𝑢−𝑣)(𝑢+𝑣)

𝑢−𝑣
= 𝑢 + 𝑣. 

 

Hence, the equation of l is:𝑦 =  𝑢 + 𝑣 𝑥 − 𝑢𝑣. 

The intersection of the line l and conic D are the solutions to the following equation 𝑐1𝑥
2 + 𝑐2  𝑢 + 𝑣 𝑥 −

𝑢𝑣2+𝑐3𝑥𝑢+𝑣𝑥−𝑢𝑣+𝑐4𝑥+𝑐5𝑢+𝑣𝑥−𝑢𝑣 

+𝑐6 =0,which can be simplified as 

 

(𝑐1 + 𝑐3𝑢 + 𝑐2𝑢
2 + 𝑐3𝑣 + 2𝑐2𝑢𝑣 + 𝑐2𝑣

2)𝑥2 + (𝑐4 + 𝑐5𝑢 + 𝑐5𝑣 − 𝑐3𝑢𝑣 − 2𝑐2𝑢
2𝑣 

−2𝑐2𝑢𝑣2)𝑥 + (𝑐6 − 𝑐5𝑢𝑣 + 𝑐2𝑢
2𝑣2) =0. 

 

Since l is tangent to D, then the discriminant of the above quadric equation is 

D(u, v) =(𝑐4 + 𝑐5𝑢 + 𝑐5𝑣 − 𝑐3𝑢𝑣 − 2𝑐2𝑢
2𝑣 − 2𝑐2𝑢𝑣2)2

 

−4(𝑐1 + 𝑐3𝑢 + 𝑐2𝑢
2 + 𝑐3𝑣 + 2𝑐2𝑢𝑣 + 𝑐2𝑣

2) 𝑐6 − 𝑐5𝑢𝑣 + 𝑐2𝑢2𝑣2 = 0. 

 

Since u, v arbitrary, we replaceu and v by x, z respectively, and 

D(x, z) =(𝑐4 + 𝑐5𝑥 + 𝑐5𝑧 − 𝑐3𝑥𝑧 − 2𝑐2𝑥
2𝑧 − 2𝑐2𝑥𝑧2)2

 

− 4(𝑐1 + 𝑐3𝑥 + 𝑐2𝑥
2 + 𝑐3𝑧 + 2𝑐2𝑥𝑧 + 𝑐2𝑧

2)(𝑐6 − 𝑐5𝑥𝑧 + 𝑐2𝑥
2𝑧2)=0 

 

ExpandingD(x, z) and simplifying the expansion via Mathematica, we get:  
 

After simplifyingresult in Appendix Iwe get: 

D 𝑥, 𝑧 =  − 4 𝑐1𝑐2 + 𝑐3
2 𝑥2𝑧2 +  − 4 𝑐2𝑐4 + 2 𝑐3𝑐5  𝑧 + 𝑥 𝑧𝑥 +  𝑐5

2 − 4 𝑐2𝑐6  

× (𝑧 + 𝑥)2  + (−2 𝑐3 𝑐4 + 4 𝑐1𝑐5)𝑥 𝑧 + (2 𝑐4𝑐5 −  4 𝑐3𝑐6)(𝑥 + 𝑧) + (𝑐4
2 − 4 𝑐1𝑐6)

= (− 4 𝑐1𝑐2 +  𝑐3
2)𝑥2𝑧2 + (−2)(2 𝑐2𝑐4 − 𝑐3𝑐5)(𝑧 + 𝑥) 𝑧𝑥 + (𝑐5

2 − 4 𝑐2𝑐6)(𝑧 + 𝑥)2 

+(− 2𝑐3𝑐4 + 4 𝑐1𝑐5)𝑥 𝑧 + (2 𝑐4𝑐5 − 4 𝑐3𝑐6)(𝑥 + 𝑧) + (𝑐4
2 − 4 𝑐1𝑐6).    

 

Finally, we rename this polynomial as 

A 𝑥, 𝑧 = 𝑎1𝑥
2𝑧2 + 𝑎2𝑥𝑧 𝑥 + 𝑧 + 𝑎3(𝑥 + 𝑧)2 + 𝑎4𝑥𝑧 + 𝑎5 𝑥 + 𝑧 + 𝑎6,  

where 

𝑎1 = −4𝑐1𝑐2 + 𝑐3
2, 𝑎2 = −2(2𝑐2𝑐4 + 𝑐3𝑐5),               𝑎3 = 𝑐5

2 − 4𝑐2𝑐6, 

𝑎4 = −2𝑐3𝑐4 − 𝑐1𝑐5, 𝑎5 = 2(𝑐4𝑐5 + 2𝑐3𝑐6),                  𝑎6 = 𝑐4
2 − 4𝑐1𝑐6.  

Thus, we prove the claim.∎ 
 

3. Prove Poncelet’s Theorem Via Resultant 
 

Now we are ready to prove the existence of Poncelet’s triangle via resultant.In Figure 2, let point P0=(x, x
2
) on 

conic C, and construct a tangent to conic D, then this tangent will meet a conic C again at the point P2=(z, z
2
). 
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Now let’s construct a second tangent to conic D from point P2=(z, z
2
) to point P3=(w, w

2
). Next,let’s connect 

points P1and P2.  We want to show that line P2P0is also tangent to a conic D.  We note that the tangents P0P1 and 

P1P2can be described by equations 
 

A(x, z) =a1x
2
z

2
+a2xz(x+z)+a3(x+z)

2
+a4xz+a5(x+z)+a6,     

A(w, z) =a1w
2
z

2
+a2wz(w+z)+a3(w+z)

2
+a4wz+a5(w+z)+a6.    

The resultant of A(x, z) and A(z, w) with respect to z, is a polynomial in x , w; of the following form after 

simplifying:  
 

A(x, w)= b1x
2
w

2
+b2xw(x+w)+b3(x+w)

2
+b4xw+b5(w+z)+b6=0,    

where coefficients b1, b2, b3, b4, b5, and b6 can be determined as follows: 
b1=-a2

2
a3

2
+4a1a3

3
-a2

2
a3a4+4a1a3

2
a4+a1a3a4

2
+a2

3
a5-4a1a2a3-a1a2a4 a5 +a1

2
a5

2
.     

b2= -a2a3
2
a4+2a1a3

2
a5+2a1a3a4 a5-a1a2a5

2
+a2

2
a6-4a1a2a3 a6-a1a2a4a6 +2a1

2
a5a6 ,   

b3=a3
4
-a2a3

2
a5+a1a3a5

2
+a2

2
a3a6-2a1a3

2
a6-a1a2a5 a6+a1

2
a6

2
,  

b4= -4a3
4
-4a3

3
a4-a3

2
a4

2
+6a2a3

2
a5+2a2a3a4 a5-2a2

2
a5

2
+a1a4a5

2
 

-4a1a3
2
a6+a2

2
a4a6-4a1a3a4 a6-a1a4

2
a6+2a1a2a5 a6, 

b5= -a3
2
a4a5+a1a5

3
+2a2a3

2
a6+2a2a3a4 a6-a2

2
a5a6-4a1a3a5 a6-a1a4a5 a6+2a1a2a6

2
,   

b6= -a3
2
a5

2
-a3a4a5

2
+a2a5

2
+4a3

2
a6+4a3

2
a4 a6+a3a4

2
a6-4a2a3 a6-a2a4a5 a6+a2

2
a6

. 
. 

 

By the geometric meaning of the resultant, i.e., the common factor of the two polymonials,     

A(x, w) =b1x
2
w

2
+b2xw(x+w)+b3(x+w)

2
+b4xw+b5(x+w)+b6 =0, 

isthe condition for the lineP2P0 to be tangent to conic D.  We also check A(x,w) is in  

the exact format of A(x,z) with different coefficients. Hence, ∆𝑃0𝑃1𝑃2 is a Poncelet’s triangle. ∎ 
 

4. Conclusion   
 

In summary, we have shown in this paper, first, the conditions for a line through two points on conic C to be 

tangent to conic D; second, the conditions for the existence of a Poncelet’s triangle; finally, if there exists one 

Poncelet’s triangle, than there exist infinitely many of such triangles, since variables x, w, and z are arbitrary. 
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