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Abstract 
 

As opposed to stochastic dynamics, recent studies suggested that financial markets might be governed by chaotic 
dynamics. Models that tried to explain market behavior are based on the stochastic hypothesis, which is observed 
when adding the perturbation error. However, stochastic models provide poor forecasts of the market, so far, 
which raises the question about the validity of the stochastic hypothesis. This paper presents a practical 
framework to test chaotic dynamics even for noisy systems as opposed to stochastic dynamics. It elaborates an 
easy-to-use and comprehensive algorithm to build a program to test chaos based on theoretical studies. Monte-
Carlo simulations have confirmed that this test is powerful in detecting chaotic dynamics. The applications have 
confirmed that stock index returns S&P 500, Nikkei 225 and CAC 40 are stochastic and not chaotic. 
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Introduction 
 
Chaos is a recent field of study which has been observed in physics since 1960s. The predominant linear 
techniques at that time were unable to explain some specific phenomena such as the movement of a driven 
pendulum where it may behave erratically and show irregular sequences of left and right turns, streams in the 
ocean, and more recently in meteorological science. As opposed to linear dynamics, these phenomena are called 
nonlinear dynamics. Recently, in finance, the debate still stands trying to find the answer whether stock 
movements are primary generated by stochastic or chaotic dynamics. These two systems look almost the same 
and even the powerful BDS test for IID cannot separate them. Consequently, two main streams describing the 
stock behavior have seen the light, and until then the distinction between them depends on the theoretical context. 
Moreover, recent tests to detect chaos are efficient only for correctly measured observation, and are not valid for 
financial data where data are sensitive to measurement noise. This paper presents a practical test for chaos which 
is valid even for noisy observation. Section 1 defines the chaos, section 2 defines the Lyapunov exponent, section 
3 contains the procedure to estimate the Lyapunov exponent, section 4 gives an approximation to the chaotic map, 
section 5 describes the choice of parameters (L, m, q), section 6 gives the asymptotic distribution of the estimated 
Lyapunov exponent, section 7 contains simulations, section 8 investigates the dynamics of three major stock 
indexes, and finally we conclude. 
 
1. Definition of chaos 
 

In a scientific context, the word chaos has a slightly different meaning than it does in its general usage as a state 
of confusion, lacking any order. Chaos, with reference to chaos theory, refers to an apparent lack of order in a 
system that nevertheless obeys particular laws or rules; this understanding of chaos is synonymous with 
dynamical instability, a condition discovered by the physicist Henri Poincaré in the early 20th century that refers 
to an inherent lack of predictability in some physical systems. The two main components of chaos theory are the 
ideas that systems - no matter how complex they may be - rely upon an underlying order, and that very simple or 
small systems and events can cause very complex behaviors or events. This latter idea is known as sensitive 
dependence on initial conditions. 
 

Broadly speaking, mathematical models can be classified as either deterministic or stochastic models.  
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A deterministic process is a process that when repeated exactly in the same way will yield exactly the same 
outcome, in contrast to a stochastic process which yields different outcomes when repeated exactly in the same 
way. For example, if we go back in time and set exactly the same conditions as what we had observed in its very 
tiny detail, according to deterministic approach, the movement of the stock index would be exactly in the way as 
we observed it today, citrus paribus. Conversely, and according to the stochastic approach, even if we have 
exactly the same initial conditions as we had observed in the past, the stock index movement would generate a 
different pattern. One can suggest that deterministic systems exhibit only regular behavior, and if we are able to 
know the system’s current state, we can easily predict its exact future state. However, this is not the case every 
time. Indeed, many deterministic systems exhibit irregular, random-like and unpredictable behavior known as the 
butterfly effect. 
 
Chaos is defined in a time evolution described by a dynamical system by the solution of the following Ordinary 

Differential Equation ODE in continuous time: ( )t
t

X F X
t

∂
=

∂
, or ODE in discrete time: ( )1t tX F X −= , where 

d
tX ∈  and F is a d d→   map. For example, the logistic map ( )1 11t t tx x xα − −= ⋅ −  is known to exhibit 

chaotic behavior for 3.57 ≤ α ≤ 4 (Devaney, 1989). A higher dimensional example is given by the Hénon map: 
( ) ( )2

1 1 1, 1 ,  t t t t tF x y a x y b x− − −= − ⋅ + ⋅ . Numerical study shows that the Hénon map has complicated dynamics 
for a = 1.4 and b = 0.3. 
 
Chaotic systems need sophisticated computational means (computers) to be correctly studied; as a result, the 
amazingly irregular behavior of some nonlinear deterministic systems was not appreciated. And when such 
systems are encountered in observations, they were explained as stochastic. 
 
There are many studies of the mathematical aspects of chaos and dynamical systems, including Eckmann & 
Ruelle (1985) and Devaney (1989). Numerical implementations are discussed in Parker & Chua (1989). Chaos 
has attracted attention of the statistical community; see the special issue of the Journal of Royal Statistical Society 
series B, which includes Casdagli (1992), Smith (1992), and Nychka et al. (1997). Recognizing and quantifying 
chaos in time series was the subject of many studies. In fact, several approaches have been proposed including 
estimating fractal dimensions, Smith (1992), nonlinear forecasting, Casdagly (1992), estimating entropy (defined 
as the average rate that information is produced), Eckmann & Ruelle (1985), and estimating Lyapunov exponents, 
Wolf et al. (1985), Abarbanel et al. (1991) and Nychka et al. (1997). 
 

Among the methods proposed, fractal dimension estimation is perhaps the simplest one. It provides a test about 
the finite dimensionality of a system. However, the dimension estimates is highly sensitive to measurement error 
in the data and may get worse with dynamical noise (Smith, 1992). Similar difficulty exists in the entropy 
estimates (Eckmann & Ruelle, 1985). Nonlinear forecasting is a more general concept because it includes 
nonlinearity in both deterministic and stochastic systems and it can be detected by the BDS test (Brock et al., 
1996). Yet, the purpose of chaos test is to make difference between chaotic behavior and stochastic behavior. The 
problem encountered in fractal dimension estimation and entropy estimates is avoided in the Lyapunov exponent 
approach. 
 

2. The Lyapunov exponent 
 

Consider two points in a state space: X0 and X0 + Δx0, each of them will generate an orbit in that space using some 
equation or system of equations. These orbits can be thought as parametric functions of a variable which is related 
to time. If we use one of the orbits as reference orbit, then the separation between the two orbits will also be a 
function of time. Because sensitive dependence can arise only in some portions of a system (like the logistic 
equation), this separation is also a function of the location of the initial value and has the form Δx(X0, t). In a 
system with attracting fixed points or attracting periodic points, Δx(X0, t) decreases asymptotically with time. If a 
system is unstable, then the orbits diverge exponentially for a while, but eventually settle down. For chaotic points, 
the function Δx(X0, t) will behave erratically. The perturbation Δx0 created initially between X0 and X0 + Δx0, 
generates perturbed and unperturbed trajectories, the difference between the two trajectories after t time steps is 
measured by: 
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( )0

0

,1lim ln
t

x X t
t x

λ
→∞

∆
=

∆
  (Eq. 1) 

This number, called the Lyapunov exponent λ, is useful for distinguishing among the various types of orbits. It 
works for discrete as well as continuous systems. It measures the average exponential divergence (positive 
exponent) or convergence (negative exponent) rate between nearby trajectories within a time horizon that differ in 
initial conditions only by an infinitesimally small amount. We distinguish 3 cases of λ: 
 

• λ < 0: the orbit attracts to a stable fixed point or stable periodic orbit. Negative Lyapunov exponents are 
characteristic of dissipative or non-conservative systems. Such systems exhibit asymptotic stability; the 
more negative the exponent, the greater the stability. Super-stable fixed points and super-stable periodic 
points have a Lyapunov exponent of λ = -∞. 

• λ = 0: the orbit is a neutral fixed point (or an eventually fixed point). A Lyapunov exponent of zero 
indicates that the system is in some sort of steady state mode. A system with this exponent is conservative. 
Such systems exhibit Lyapunov stability. A system with a zero Lyapunov exponent is near the “transition 
to chaos” (Ellner & Turchin, 1995). 

• λ > 0: the orbit is unstable and chaotic. Nearby points, no matter how close, will diverge to any arbitrary 
separation. All neighborhoods in the phase space will eventually be visited. These points are said to be 
unstable. 

 

For an n-dimensional mapping, Oseledec’s (1968) theorem states that the Lyapunov exponents are given by: 

 ( )lim lni iN
v Nλ

→∞
=   (Eq. 2) 

vi’s are the eigenvalues of the map matrix or the Jacobian product of F. 
 

3. Estimating the Lyapunov exponent 
 

Estimating the Lyapunov exponent is far from straightforward. While the theoretical concept provides a strong 
proof of its power in detecting chaotic dynamics (λ ≥ 0), application to a time series is not evident. Wolf et al. 
(1985) have developed the first practical test of chaos on experimental data. Their algorithm is based on arbitrarily 
defining the Ordinary Differential Equations of the chaotic system, and test whether the data process coincides 
with the predefined system or not. This direct approach has limited applications since it bounds the chaotic 
behavior to the tested ones. Moreover, it cannot accept measurement errors or noise. 
 
Perfectly chaotic systems are hard to model, first because of measurement errors, and second because the chaotic 
map is usually unknown and its approximation yields some perturbations (Schreiber & Kantz, 1995). Thus, a pure 
chaotic system is almost rare in reality, and we usually observe noisy systems. Given a set of time series { } 1

T
t t

x
=

, 
a noisy chaotic system can be written as: 
 

 ( )2, , ,t t L t L t mL tx f x x x ε− − −= +  (Eq. 3) 
 

The state-space representation of this equation is: 
 

 

( )2

2

, , ,

:

t L t t L t L t mL t

t L t L

t mL t mL L

x x f x x x
x x

F

x x

ε− − − −

− −

− − +

 = +  
  
   →
  
  

   






 (Eq. 4) 

 
Where: εt represents the added noise. This formulation is a general form of the chaotic map, the amplitude of the 
added noise is measured by the variance of εt.  
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A noise-free system has ( ) 2 0tVar εε σ= = , as Var(εt) increases, the noise increases. In order to detect chaos, the 

amplitude of the noise should not exceed a certain limit 2
limσ , which is a function of the chaotic map.1 If the noise 

exceeds that limit, the chaotic dynamics will be immersed in the noise, and it will be impossible to detect chaos, 
the system becomes then stochastic. The Lyapunov exponent for a noisy system σλ  with 2 0εσ >  will tend to the 

Lyapunov exponent of the deterministic skeleton 0λ  with 2 0εσ = . It is suspected that 
2 0

0
lim
ε

σ
σ

λ λ
→

=  and 0σλ λ≤ . 

L is the time delay and its introduction allows the possibility of skipping samples during the reconstruction. The 
parameter m is the embedding dimension or the length of past dependence. Since the dynamics are unknown, we 
cannot reconstruct the original map that gave rise to the time series. Instead, we seek an embedding space where 
we can reconstruct the map from the observed data that preserve the invariant characteristics of the original 
unknown map. The embedding dimension m is in general different from the unknown dimension d (defined 
above). The simplest method for deriving a state vector { } 1

T
t t

x
=

 is the delay coordinates proposed by Packard et 
al. (1980), i.e., by using L and m instead. Takens’ (1981) theorem states that reconstructed state vector will have 
the same dynamical properties as the original system if m is large enough (m > 2d). 
 
Two main methods exist for the estimation of the largest Lyapunov exponent, the first one was proposed by Wolf 
et al. (1985) which is based on a direct approach. And the second one proposed by Eckmann & Ruelle (1985) 
which is based on a Jacobian approach. The direct approach consists of tracing the exponential divergence of 
nearby trajectories. In the presence of noise, however, the deterministic divergence is concealed by the noise 
process on the small scales. The direct approach is subject to many critics, because it requires long data series and 
is sensitive to dynamic noise (McCaffrey et al., 1992, Schreiber & Kantz, 1995, and Nychka et al., 1997). 
 
The Jacobian-based approach can give consistent estimates of the Lyapunov exponents even in the presence of 
noise (McCaffrey et al., 1992, and Nychka et al., 1997). It consists of computing the Jacobian matrix of the 
chaotic map F: 

 

2

1 0 0 0
0 1 0 0

0 0 1 0

t L t L t mL L t mL

t

f f f f
x x x x

J

− − − + −

∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 
 

=  
 
 
 
 







    



 (Eq. 5) 

 
Because the Lyapunov exponents measure the log-difference in the norms of the two trajectories after M time 
steps, Eckmann & Ruelle (1985) have shown that for small perturbations, the linear approximation will be defined 
by the derivatives of the map F (relative to X): 

 
1

1

1lim ln
M

M tM t

J
M

λ
−

−→∞
=

= ∏  (Eq. 6) 

 

Where  indicates the Euclidian vector norm. The Euclidian norm is equivalent to the square root of the largest 

eigenvalue of the matrix transposed and multiplied by itself, i.e., ( )( )1
2max 'X eig X X= . Posing 

1

1

M

M M t
t

T J
−

−
=

=∏ , the dominant Lyapunov exponent could then be written as: 

 
                                                           
1 A further research on how to determine 2

lim
σ  is suggested. 
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 ( )1
1lim ln

2M
v

M
λ

→∞
=  (Eq. 7) 

Where v1 is the largest eigenvalue of the matrix M MT T′ : ( )( )1 max M Mv eig T T′= . Since the data are finite, an 

estimate of the Lyapunov exponent is: ( )1
1ˆ ln

2
v

M
λ = , where M is the number of evaluation points or the block-

length (M ≤ T). McCaffrey et al. (1992) suggest that the evaluation points should be equally spaced. Moreover, 
Shintani & Linton (2004) have found that the best magnitude for M was close to T1/3 for processes with chaotic 
like behavior (M can also cover the full sample, i.e., M = T). 
 

The estimated λ̂  tends to have a positive systematic bias compared to the theoretical Lyapunov exponent defined 
in (Eq.7), because one condition is that M tends to infinity, and for limited M, the obtained quantity is over-
estimated. Hence, one possible correction is to compute the Orthogonal-triangular decomposition estimate of λ as 
proposed by Abarbanel et al. (1991), i.e., by multiplying TM by a unit vector U0 to reduce the systematic positive 
bias in the formal estimate of λ. U0 is chosen at random with respect to uniform measure on the unit sphere, and 
then the estimated λ converges asymptotically to the global Lyapunov exponent as M → ∞, because U0 has zero 
probability of falling into the subspace corresponding to subdominant exponents (Nychka et al., 1997, and Bailey 
et al., 1998). In practice, however, U0 is chosen as: U0 = (1, 0, …, 0)’. 
 
4. Approximating the chaotic map F 
 

The procedure described above is based on the estimation of the Jacobian matrix of the chaotic map F. However, 
for a scalar time series { } 1

T
t t

x
=

, the map generating the process is usually unknown; as a result, the Jacobian 
matrix could not be estimated and we cannot compute the Lyapunov exponent. For that purpose, we need to 
approximate the unknown chaotic map with a known function that can learn the process by reading the relation y 
= G(x), where , px y ∈ . Some candidate functions exist, e.g., splines (smooth piecewise polynomials), neural 
network, nearest neighbor …etc. Hornik et al. (1989) proposed that special networks can, in principle, 
approximate any smooth, nonlinear function to arbitrary accuracy as the number of hidden units goes to infinity. 
 
Initially, neural networks were developed as a simulation model of the brain. A neural net system consists of 
neurons (cells), neural interconnection (internal links), and connections with the outer world. In a multi-layer 
network, neurons are organized in layers with interconnections only between cells of neighboring layers. The 
network is connected to the outer world by the first or input layer and by the last or output layer. The space 
existing between input and output is called hidden layers. An input signal is fed forward through the hidden layers 
toward the output layer without feedback. The number of cells in a layer is called the dimension of the layer. The 
basic concept of feed-forward neural net is the propagation of a signal from one layer to another. 
 
The hidden layer learns to recode (or to provide a representation for) the inputs. More than one hidden layer can 
be used. The architecture of multiple hidden layers is more powerful than single-layer networks: it can be shown 
that any mapping can be learned, given two hidden layers. 
 

The units are a little more complex than those in the original perceptron (a simple form of neural networks. They 
have no hidden layers, and can only perform linear classification tasks): their input/ output graph is represented by 
an activation function. 
 

The neural net receives a number of inputs either from original data, or from the output of other neurons in the 
neural network. Each input comes via a connection that has a strength (or weight). Each neuron also has a single 
threshold value. The weighted sum of the inputs is formed, and the threshold subtracted to compose the activation 
of the neuron. The activation signal is passed through an activation function (also known as a transfer function) to 
produce the output of the neuron. A simple network has a feed-forward structure: signals flow from inputs, 
forwards through any hidden units, eventually reaching the output units. Such a structure has stable behavior.  
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However, if the network is recurrent (contains connections back from later to earlier neurons) it can be unstable, 
and has very complex dynamics. Recurrent networks are very interesting to researchers in neural networks, but so 
far it is the feed-forward structures that have proved most useful in solving real problems (Haykin, 1998). 
 
A typical feed-forward network has neurons arranged in a distinct layered topology. The input layer is not really 
neural at all: these units simply serve to introduce the values of the input variables. The hidden and output layer 
neurons are each connected to all of the units in the preceding layer. Again, it is possible to define networks that 
are partially-connected to only some units in the preceding layer. However, for most applications, fully-connected 
networks are better. When the network is executed, the input variable values are placed in the input units, and then 
the hidden and output layer units are progressively executed. Each of them calculates its activation value by 
taking the weighted sum of the outputs of the units in the preceding layer, and subtracting the threshold. The 
activation value is passed through the activation function to produce the output of the neuron. When the entire 
network has been executed, the outputs of the output layer act as the output of the entire network. 
 

Let ( )2, , ,t L t L t mLx x x− − −  be the input signal of an m-dimensional layer, this signal is transmitted to a q-
dimensional layer with connection weights βi,j, i = 1, …, m and j = 1, …, q, so the jth cell will receive a total signal 

of ,
1

m

i j t iL
i

xβ −
=
∑ , which is the total sum of signals provided by the foregoing m cells. Each cell has its own 

sensitivity called internal threshold, it is moreover incorporated in the form of an additional signal β0,j. Thus, each 

cell will receive in total: 0, ,
1

m

j i j t iL
i

xβ β −
=

+∑ . The propagation of a signal is governed by an activation function of 

a cell denoted: Ψ. Typically, Ψ is a sigmoid function which is monotone and bounded such that ( )lim 1
u

u
→∞

Ψ =  

and ( )lim 0
u

u
→−∞

Ψ = . However, to obtain the full power of neural net approximation, these limits could not be 

respected (Hornik et al., 1994). Usually, the logistic function ( ) 1
1 uu

e −Ψ =
+

 is used. More powerful function, 

however, exits; mainly the hyperbolic tangent ( ) ( )tanhu uΨ = . Its lower limit is -1 instead of zero. 

The output signal from the jth cell is then 0, ,
1

m

j i j t iL
i

xβ β −
=

 Ψ + 
 

∑ , the total q hidden layers of the neural net, 

with αj inter-layers connection weights and α0 the network threshold, will transmit 

0 0, ,
1 1

q m

j j i j t iL
j i

xα α β β −
= =

 + Ψ + 
 

∑ ∑ . The chaotic map F could then be approximated by: 

 0 0, ,
1 1

q m

t j j i j t iL t
j i

x xα α β β ε−
= =

 ≈ + Ψ + + 
 

∑ ∑  (Eq. 8) 

 

It is possible to add some other fitting functions to the above formulation, such as polynomial formulation or 
splines. Nevertheless, the added functions will increase the number of coefficients to be estimated, which will 
render any approximation impractical. 
 

The noise { } 1

T
t t mL
ε

= +
 should be minimized to compensate the loss of information engendered from the 

approximation by the neural network. Consequently, an obvious estimation algorithm is the nonlinear least square 

NLS which minimizes: ( ) ( ) 22

1 1
,

T T

t t t L
t mL t mL

S x f xθ ε θ−
= + = +

 = = − ∑ ∑ , where θ represents the parameters to 

estimate. 
 
 
 
 

http://www.aijcrnet.com/


American International Journal of Contemporary Research                                              Vol. 2 No. 8; August 2012 

63 

5. Choice of the parameters L, m and q 
 
The triplet (L, m, q) defines the complexity of the chaotic map. In theory, as the number of hidden layers q goes to 
infinity, neural net function can approximate any smooth, nonlinear function to arbitrary accuracy. A choice of the 
time delay L that keeps time dependence in the scalar time series is desirable. However, a too large value causes a 
loss of information, and conversely, a value too small makes the observations vector temporarily close and remote, 
giving rise to uncertainties. 
 
For the embedding dimension m, it should satisfy Takens’ (1981) theorem: m > 2d. Yet, one should know the 
dimension of the original state space d to determine the necessary dimension of the reconstructed state space m. 
One approach to find m is the singular system approach by Broomhead & King (1986)2 widely used in many 
areas of applied numerical linear algebra. The method suggests an initial reconstitution of the state space with an 
arbitrarily large m, even larger than suggested by Takens’ theorem. 
 
The common handicap in choosing the triplet (L, m, q) is that low parameters may prevent the neural network 
from reasonably approximating the map that generates the scalar time series. On the other hand, large parameters 
increase computational time exponentially because the number of coefficients to estimate will increase. Nychka et 
al. (1997) have adopted a strategy to select the triplet (L, m, q) which minimizes the Schwarz (or Bayesian) 

Information Criterion as defined by Schwarz (1978), ( ) ( )ˆ2 lnSIC L n Tθ= − + , where ˆ( )L θ is the estimated 

log-likelihood function, T is the sample size, and n is the number of estimated coefficients. However, this strategy 
tends to eliminate higher-order regressions where L, m or q are rather high; hence, medium to high complex 
chaotic dynamics could not be revealed because the SIC penalizes models as the number of coefficients increases. 
Besides, this method eliminates the same chaotic map even when we change the starting value. 
 
Hypothetically, increasing the order of the triplet (L, m, q) allows the neural net function to approximate the map 
to arbitrarily accuracy. If, for any given combination of the triplet (L, m, q), a positive Lyapunov exponent is 
obtained, this provides a strong indication of the presence of chaos. Conversely, the failure to obtain positive 
Lyapunov exponent for any combination of (L, m, q), rejects the hypothesis of chaotic dynamics. 
 

One may wonder then whether choosing sufficiently high order parameters (L, m, q) is adequate enough to 
conduct the estimation, since higher complex neural net would cover lower complex functions. However, even 
higher orders will cover the optimal order’s combination and add unwanted coefficients structure with increasing 
lagged values of the times series, which will result in losing information (from the time series), and facing the 
problem of redundant variables. 
 
The practical procedure to estimate the Lyapunov exponent, is to choose a ceiling for the triplet (L, m, q) not to 
exceed, perform nonlinear least square estimation of the models for all parameters (L, m, q), which yields in total 
L*m*q regressions, compute the Lyapunov exponent for each regression, and finally choose the triplet (L, m, q) 
for which the higher exponent λ is obtained. This method is computationally demanding, yet, it insures the 
consistency of the result. The main drawback of this method is that when the dynamics are generated by a high-
level chaos, under the chosen ceiling triplet (L, m, q), the test will not reveal any chaotic dynamics because the 
tested chaotic maps lie beneath the ceiling triplet. In theory, increasing the ceiling triplet (L, m, q) to infinity will 
increase the power of the test; however, in practice the ceiling triplet should have reasonable values to enable 
computation with current computers. 
 

6. Asymptotic distribution of the estimated Lyapunov exponent 
 

The introduction of noise in the aforementioned chaotic map F, should in principle affect the accuracy of the 
estimated Lyapunov exponent by making it stochastic. Until recent years, the Lyapunov exponents were 
computed as a constant measure (Wolf et al., 1985). Some works on the asymptotic distribution of λ were carried 
out by Nychka et al. (1997), Bailey et al. (1998), and Shintani & Linton (2004). 
 
 

                                                           
2 This method has many names in the literature including: principal component analysis, factor analysis, and Karhunen-

Loeve decompositions. 
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Nychka et al. (1997) and Bailey et al. (1998) have used a central limit theorem from a functional Markov process 
to obtain distributional results for the local Lyapunov exponent process. Under some conditions, mainly that F is 
bounded, its Jacobian is also bounded, εt are IID and their probability distribution function is bounded; these 
conditions are needed to have a product of several Jacobian which yields a distribution that is not singular. In their 
theorem 4.1, Bailey et al. (1998) state that: 
 

 
( )
( )

( )
ˆ

0,1
ˆ

M Asymptotically

M

M
N

Var

λ λ

λ

−
→  as M → ∞ (Eq. 9) 

 
Shintani & Linton (2004) have shown under some conditions that the variance of the ith largest Lyapunov 
exponent is: 

 ( ) ,
1

1ˆ lim
M

i i i tM t
Var Var

M
λ η

→∞
=

 = Σ =  
 

∑  (Eq. 10) 

Where: , ,i t i t iη ω λ= − , with 
( )
( ),

1 1

'1 ln
2 '

i t t
i t

i t t

v T T
v T T

ω
− −

 
=  

  
 for t ≥ 2 and ( ),1 1 1

1 ln '
2i iv T Tω =    . 

 

Since tη  are serially correlated and non IID, we will employ the Heteroskedasticity and Autocorrelation 
Consistent HAC covariance matrix estimator as described by Andrews (1991): 

 ( )
1

1

ˆˆ
M

i
j M M

j j
S

ξ δ
−

=− +

 
Σ =  

 
∑  and ( )

1

1ˆ ˆ ˆ
M

t t j
t j

j
M

δ η η −
= +

= ∑  (Eq. 11) 

Where: , ,i t i t iη ω λ= −  with 
( )
( ),

1 1

'1 ln
2 '

i t t
i t

i t t

v T T
v T T

ω
− −

 
=  

  
 for t ≥ 2 and ( ),1 1 1

1 ln '
2i iv T Tω =    . 

( )ξ  and SM denote a kernel function and a lag truncation parameter, respectively. 
 

Assumption: (HAC estimation). [ ]: 1,1ξ → −  is a piecewise continuous function, continuous and taking the 
value 1 at zero, symmetric around zero, and has a finite second moment. In other worlds, the class of kernel is: 

( ) ( ) ( ) ( ) ( )
( )

2: 0 1, , ,

 is continuous at 0 and all but a finite number of points

x x x x dxξ ξ ξ ξ ξ

ξ

+∞

−∞

 = − = ∀ ∈ < ∞ Ξ =  
  

∫  

The lag truncation parameter must satisfy lim MM
S

→∞
= ∞  and lim 0M

M

S
M→∞

= . 

 
In a comparison between kernels based on Monte-Carlo simulation, Andrews (1991) suggested that the Quadratic 
Spectral “QS” kernel is the optimal choice among others: 

 ( ) 2 2

6sin
25 65 cos612 5

5

QS

x
xx xx

π
πξ ππ

  
     = −  

  
 
 

  (Eq. 12) 

The optimal lag truncation parameter SM for the QS kernel is: ( )
1* 51.3221MS Tκ= ⋅ . Andrews (1991) has 

discussed the procedure to estimate κ, which is rather difficult because it depends on the estimated function, for 
simplicity’s sake I will choose κ = 1 since this approximation will not disagree in any way with the lag truncation 
parameter conditions stated by Andrews (1991). 
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The estimated variance of the Lyapunov exponent will converge in probability to the true variance under the 
aforementioned conditions. 
 
The test hypothesis could then be constructed. The null hypothesis to test is H0: λ ≥ 0 against the alternative H1: λ 
< 0. The rejection of the null hypothesis provides a strong evidence of no chaotic dynamics. The computed λ 
stands for the dominant Lyapunov exponent, which corresponds to the largest eigenvalue v1. The test statistic to 
compute is: 

 ( )
1

ˆˆ 0,1
ˆ

MW N

M

λ
= →

Σ
  (Eq. 13) 

 

The null hypothesis is rejected if Ŵ z α≤ − , where zα is the critical value that satisfies [ ]Pr Z z α α≥ =  with Z 
being a standard normal variable. 
 
The magnitude of λ will depend on the degree of divergence provided by the chaotic map F, i.e., as the map gives 
more and more divergent outputs, λ is expected to increase toward infinity. Similarly, very low chaotic dynamics 
(with lower divergent outputs) will display λ almost zero. A system with a zero Lyapunov exponent λ is near the 
“transition to chaos” (Ellner & Turchin, 1995). On the other hand, negative values of λ indicate the absence of 
chaotic dynamics in the map function. Purely random numbers are expected, theoretically, to have λ which tends 
toward minus infinity. 
 
7. Simulation 
 

To confirm the methodology in previous sections, some simulations should be carried on. Consequently, two 
chaotic models and three non-chaotic models are chosen. Noise is then added to the models. The chaotic models 
are the well-known tent-map and the logistic map; non-chaotic models are composed of a GARCH model, an 
ARMA model and a simple random number. The core part of the chaos test program written on MATLAB is 
provided in http://www.mathworks.com/matlabcentral/fileexchange/22667.  
 

Model 1: The tent map: ( )
1 t 1

1 t 1

2 +           , if x 0.5
2 1 +  , if x 0.5

t t t

t t t

x x
x x

ε
ε

− −

− −

= <
 = − ≥

 is the simplest chaotic map, with the starting value 

x0 = 0.7 and ( )20,t NID εε σ→  a Normally and Independently Distributed white noise, with 0.01εσ = . 
 
Model 2: Logistic map: ( )1 13.57 1t t t tx x x ε− −= − + , with the starting value x0 = 0.7 and ( )20,t NID εε σ→  a 

normally distributed white noise, with 0.01εσ = . 

Model 3: GARCH(1, 1) process: t t tx hε= , where 2
1 10.01 0.1 0.85t t th x h− −= + +  and ( )20,t NID εε σ→  

Normally and Independently Distributed, with x0 = 0 and 
( )0

0.01 0.2
1 0.1 0.85

h = =
− +

 is the sample unconditional 

variance. 
Model 4: ARMA(1, 1) process: 1 10.1 0.2 0.15t t t tx x ε ε− −= + + + , with x0 = 0.1 and ε0 = 0. ( )20,t NID εε σ→  is 
a normally distributed white noise. 
Model 5: Normally distributed random number with zero mean and unit variance: ( )0,1tx NID→ . 
 

Some care should be taken in choosing random number generator RNG. The RNG used in this simulation 
combines a multiplicative integer congruential generator invented by Lehmer (1951) and an integer-shift-register 
generator to create uniformly distributed random numbers. Marsaglia’s “ziggurat method” (Marsaglia & Tsang, 
2000) is then applied to obtain normally distributed random numbers from the uniform random numbers.3  
                                                           
3 Mathematically, ziggurats are two-dimensional step functions. A one-dimensional ziggurat underlies Marsaglia’s algorithm. 
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This is done by using a simple uniform RNG to sample a table of pre-computed values which partition the normal 
distribution into regions of 1/32nd of its area. By comparison with the conventional method of obtaining random 
numbers by multiplicative congruential generation alone, 4  the combination of three different RNG methods 
employed here should make the resulting samples look almost perfectly independent.5 The initial seed value of 
the RNG is set by the clock of the computer at the time the program was run. 
 
For all models, 1000 observations are simulated. The activation function used in the neural network is the 
hyperbolic tangent, and the maximum parameters (L, m, q) values are (5, 6, 5). Simulation results are presented in 
Table 1. 
 
Simulation results have confirmed the test by accepting H0 of chaotic dynamics for chaotic models 1 and 2, and 
by rejecting the null hypothesis for other non-chaotic models 3, 4 and 5. 
 

I changed the starting values for all models6 (for model 5, I changed the mean and variance) to check the 
consistency of the results, the Lyapunov exponent λ changed slightly but the accepted hypotheses have remained 
unchanged (the model orders have also changed). 
 

Concerning the chaotic models 1 and 2, increasing the variance of the added noise 2
εσ  beyond a certain limit 

rejects the null hypothesis H0 of chaos dynamics, and the dominant Lyapunov exponent becomes negative.7 In 
this case, the stochastic behavior of the noise enfolds the deterministic behavior of the chaotic map, and the 
dynamics are converted to stochastic. 
 

The Lyapunov exponent for the random numbers (model 5) is expected to tend toward minus infinity. However, 
although it is the smallest value among other results, it is still a finite number. What does this mean? Does the 
above described procedure concerning the test for chaos wrong? To answer this question, we must have a closer 
look at the generated “random numbers”. Numbers generated by the computer are called pseudorandom numbers, 
because computers are in principle deterministic machines and should not exhibit random behavior. If the 
computer does not access some external device, like a gamma ray counter or a clock, then it must really be 
computing pseudorandom numbers. One favorite definition was given by Lehmer (1951): 
 

“A random sequence is a vague notion … in which each term is unpredictable to the uninitiated and 
whose digits pass a certain number of tests traditional with statisticians …” 
 

Pseudorandom numbers generated by all computers are based on the RNG, which is a specific algorithm to be 
executed by the program. The program needs a starting value for any execution, even in case of random numbers 
generation. The starting value is given by a state of the RNG which is, in the aforementioned method, a 35 length 
row-vector. Each time a pseudorandom number is generated, the state of the RNG changes accordingly and in a 
pre-specified way. The next pseudorandom number is generated accordingly to the new state, which in turn was 
formed from the previous pseudorandom number. The art of computer language makes that the generated 
pseudorandom numbers are independent; and the obtained pseudorandom numbers are almost purely random. The 
BDS test for independence is applied to the generated random numbers, and it has accepted the null hypothesis of 
IID-ness. Hence, the chaos test result for model 5, where data are composed of computer-generated random 
numbers, is acceptable.8 
 
 
 
                                                           
4 Traditionally, normal random numbers are obtained by simple scaling of the uniform random numbers. 
5 The period of the above-mentioned uniform RNG is approximately 21492, i.e., even if one drew random numbers at a rate of 

20 million per second, non-stop, (possible on a Dual Core 2, 2.26 GHz PC), they would repeat themselves only after 2435 
years! 

6 For the tent map and logistic map, starting value x0 must lie strictly between 0 and 1: 0 < x0 < 1. 
7 I suggest further researches on how to determine the limiting variance of the stochastic noise 2

limσ . 
8 The pseudorandom numbers are generated using a special computer code, a starting value is necessary to jump-start the 

procedure. In theory, pseudorandom numbers form a highly complex chaotic map. So complex that any prediction becomes 
impossible, it can be then assimilated to as a stochastic dynamic. 
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Next simulation is conducted on models 1 and 2 with conditionally heteroskedastic noise: 

Model 1#: The tent map: ( )
1 t 1

1 t 1

2 +           , if x 0.5
2 1 +  , if x 0.5

t t t

t t t

x x
x x

ε
ε

− −

− −

= <
 = − ≥

 , with the starting value x0 = 0.7 and 

( )
2

1 1

  ; 0,1

1 6 0.1 0.85
t t t t

t t t

u h u NID

h E h

ε

ε − −

 =


= − + +



 a GARCH(1, 1) noise, with ε0 = 0 and 
( )0
1 6 2 5

1 0.1 0.85
Eh E−

= = −
− +

 is the 

unconditional sample variance (the unconditional standard deviation is 0 0.0045hεσ = = ). 

Model 2#: Logistic map: ( )1 13.57 1t t t tx x x ε− −= − + , with the starting value x0 = 0.7 and 

( )
2

1 1

  ; 0,1

5 6 0.1 0.85
t t t t

t t t

u h u NID

h E h

ε

ε − −

 =


= − + +



 a GARCH(1, 1) noise, with ε0 = 0 and 
( )0
5 6 1 4

1 0.1 0.85
Eh E−

= = −
− +

 is the 

unconditional sample variance (the unconditional standard deviation is 0 0.01hεσ = = ). 
 
The unconditional variance of the added noise is chosen small. If the unconditional variance exceeds a certain 
limit, the stochastic behavior of the added noise will enfold the chaotic map, and the test will not detect chaotic 
dynamics. Results are in Table 2. 
 

The test detects chaos even in presence of conditionally heteroskedastic noise. Hence, the methodology described 
in this chapter can distinguish between stochastic and chaotic dynamics even in presence of moderate noise. The 
conducted simulations have supported the theoretical concept of the test. 
 

8. Application 
 

The data is composed of three major stock indexes rate, which are the S&P 500, the Nikkei 225 and the CAC 40 
from January 1st, 1999 until December 31st, 2008, which makes 9 years of daily observation. The data are 
downloaded from Yahoo! Finance. The rates are the daily adjusted closing spot indexes, which are transformed to 
obtain the returns. 
 

Stock index returns are largely considered in the literature as stochastic, hence governed by some probability 
distribution, and the models applied to investigate the dynamics of the returns are based on the hypothesis of 
stochastic dynamics. The stochastic behavior of the index returns is present in the error term introduced in the 
models. GARCH class models are so far considered by the literature as the best to model indexes returns 
behavior; however, the poor forecasting power of these models has awaken the question about the true dynamics 
of market returns: stochastic or chaotic. Results are summarized in Table 3. The test has confirmed the 
hypothesis that stock indexes returns are stochastic and not chaotic. 
 

Conclusion 
 

The methodology described in this paper can distinguish between stochastic and chaotic dynamics even in 
presence of moderate noise. The conducted simulations have supported the theoretical concept of the test. 
Furthermore, the test has proved that stock indexes returns are stochastic and not chaotic. 
 

Table 1: Chaos test simulation results 
 

 (L, m, q) λ p-value* CI** Hypothesis 
Model 1 (1, 2, 1) 0.1473 1 [0.1443, +∞[ H0 
Model 2 (1, 1, 1) 0.9150 1 [0.9098, +∞[ H0 
Model 3 (2, 6, 4) -0.4638 5.1656E-90 [-0.502, +∞[ H1 
Model 4 (5, 5, 3) -0.5306 3.167E-282 [-0.5549, +∞[ H1 
Model 5 (5, 4, 5) -0.6324 4.8425E-65 [-0.6939, +∞[ H1 

 

* At 5% significance level, H0 is rejected for p-values less than 0.05. 
** Confidence Interval at 5% significance level. 
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Table 2: Chaos test results for noisy chaotic models 

 

 (L, m, q) λ p-value* CI** Hypothesis 
Model 1# (1, 2, 1) -0.0081 0.3345 [-0.0397, +∞[ H0 
Model 2# (1, 1, 1) 0.9069 1 [0.9023, +∞[ H0 

 

* At 5% significance level, H0 is rejected for p-values less than 0.05. 
** Confidence Interval at 5% significance level. 
 

Table 3: Chaos test results for the indexes returns 
 

 (L, m, q) λ p-value* CI** Hypothesis 
S&P 500 (2, 6, 1) -0.3487 0 [-0.3607, +∞[ H1 
Nikkei 225 (4, 6, 4) -0.4007 0 [-0.4182, +∞[ H1 
CAC 40 (5, 6, 4) -0.3860 0 [-0.3999, +∞[ H1 

 

* At 5% significance level, H0 is rejected for p-values less than 0.05. 
** Confidence Interval at 5% significance level. 
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