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Abstract 
 

Monthly adjusted close price of gold (112 observed prices) was used for the analysis. An ARMA model was fitted 
using the first 106 observed prices and the model was used for a 6-step-ahead forecast. The forecast values were 
then compared to the original corresponding prices. The actual values fell within the forecast limits; and (limits) 
widened with increasing lead time. 
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1. Introduction 
 

The Gold Coast had long been a name for the region used by Europeans because of the large gold resources found 
in the area. The Gold Coast achieved independence from the United Kingdom in 1957, becoming the First nation 
Sub-Saharan African to do so from European Colonialism. The name Ghana was chosen for the new nation to 
reflect the ancient Empire of Ghana, which once extended throughout much of West Africa. Ghana is endowed 
with mineral deposits such as gold, diamond, manganese and bauxite. Of all the minerals mined from the earth, 
none is more useful than gold. Its usefulness is derived from a diversity of special properties. Gold conducts 
electricity, does not tarnish, malleable and very easy to work with, can be drawn into wire, can be hammered into 
thin sheets, alloys with many other metals, can be melted and cast into highly detail shapes, has a wonderful color 
and a brilliant luster. Gold is a memorable metal that occupies a special place in the human mind. 
 
Gold prices spanning a period of 124 months were subjected to Time Series Analysis. The goal was to model 
these prices, forecast the future prices and compare observed (Actual) prices with forecast values to ascertain the 
model robustness and predictive strength. 
 

2. Data Analysis 
 

A monthly adjusted close price of gold from January 2003 to April 2012 (112 observed prices) is used for the 
analysis. The data is freely available for download at Yahoo Finance web site. The time series plot of the data is 
represented graphically in Figure 1 below. 
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Figure 1: Monthly Price of Gold 

 

Looking at the time series plot, there is an increasing trend in the prices with higher values displaying more 
variation. By taking logarithm of the data, the variance becomes stable but there is still an increasing trend. As a 
result, we take the difference of logarithms. The differenced logarithm series (called returns in finance) shown in 
Figure 4 (see appendix) looks much more stationary when compared with the original time series. 
 

By performing the Augmented Dickey-Fuller unit-root test on the monthly returns, the ADF test statistic is 
-4.5433 for lag order 4 and a p-value of 0.01 is recorded. With stationary as the alternative hypothesis, we reject 
the null hypothesis that there is a unit-root in the series.  Hence we conclude that the return series is stationary. 

 

3. Model Specification 
 

We find a model that best fits the first 105 observations of the return series. Figure 5 in the appendix shows the 
estimates of the spectrum using a modified Daniell spectral window convoluted with itself and a span of 5 for 
both the solid line, [where we have also drawn the 95% confidence limits (dotted lines)] and the dash line [the  
estimated spectrum using an AR model with the order chosen to minimize the AIC value]. Estimating the 
spectrum of the return time series using a modified Daniell spectral window convoluted with itself and a span of 5 
for both, the frequencies 0.0667 and 0.195 are significant. The estimated spectrum using an AR model with the 
order chosen to minimize the AIC value agrees with these frequencies (order 9). This suggests one cycle period of 
15 months and another cycle period of 5 months. 
 

The estimated autocorrelation and the partial autocorrelation functions (ACF and PACF respectively) for the 
return series are illustrated in Figure 2 below. 

 
Figure 2: ACF and PACF of monthly gold returns 
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The ACF suggests an MA(7) model since the autocorrelation is significantly different from zero at lag 7. The 
PACF also gives a strong evidence to support an AR(9) model. However, none of these plots is very useful in 
detecting the order of ARMA models. It is very difficult to interpret the plot of extended autocorrelation functions 
of this series so we use the best subset ARMA approach to specify a model for this data. Results are displayed in 
Figure 6 (see appendix). From the results, the suggestion is that, the difference in logarithms of gold prices (ݓ௧) 
should be modeled in terms of  ݓ௧ି଻ , ݁௧ିଵ   and  ݁௧ି଼.  We therefore go ahead and investigate further, a subset of 
ARIMA(7,1,8) model on the logarithms of gold prices(ݕ௧) where ݕ௧ି଻, ݁௧ିଵand ݁௧ି଼ have non-zero coefficients. 
The estimated coefficient of ݕ௧ି଻for this model is not significant so we fit a new model without this coefficient. 
The new model looks good but from the best subset results displayed in the appendix, we see that this new model 
is the third best model so we consider the second best model suggested. This model is a subset of ARIMA(7,1,10) 
in terms of  ݕ௧ି଻, ݁௧ିଵ, ݁௧ି଼  and  ݁௧ିଵ଴  and it has the minimum AIC value(-154.68) and the maximum log-
likelihood value (81.34) among all the fitted models. Also, all the parameters are significant so we choose this 
model as the best model for the logarithm of gold prices. Using the MLE method of estimation for the parameters, 
the model for the logarithms of gold prices is given in Equation (1). 
 

௧ݕ = ௧ି଻ݕ0.1677− + ݁௧ − 0.1276݁௧ିଵ − 0.2862݁௧ି଼ + 0.2524݁௧ିଵ଴                 (1) 
 
4. Model Diagnostics 
 

To check whether the model assumptions are supported by the data, we take a look at Figure 3. From the plot, the 
standardized residuals look random, there is no significant autocorrelation in the residuals except at lag 13 and the 
p-values of the Ljung-Box test up to lag 20 are greater than 0.05. This implies that, the model fits well. 

 
Figure 3: Diagnostic Display for the fitted ARIMA Model of Monthly Gold Prices 

 

The Q-Q plot of the residuals in Figure 7 (see appendix) indicates that the tails are lighter than a normal 
distribution. We therefore do a Shapiro-Wilk test. The Shapiro-Wilk test records a p-value of 0.682, which does 
not reject normality of the error terms at any of the usual significance levels. We continue the model diagnostics 
by including ݕ௧ି଼   in the model to test for over fitting. Results from the software shows that, it is not only the 
coefficient of ݕ௧ି଼ that is not significant but also, other coefficients which were previously significant become 
insignificant and the AIC value increases. We can therefore say that, the chosen model in the previous section is 
the best and we proceed to use the model for forecasting. 
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5. Forecasting 
 

The fitted ARIMA model is used to do a 6-step-ahead forecast. The forecast values are then compared to the 
original corresponding prices. Table 1 provides details of the forecast values. All the actual values fall within the 
forecast limits and the limit becomes wide as the lead time increases. Figure 8 (see appendix) displays the last two 
years of the monthly gold prices together with 95% forecast limits for six additional months and the actual gold 
prices in these months. 
 

Table 1: Forecasting Results 
 

Time Actual Forecast Lower limit Upper limit Forecast Error 
107 106.91 105.74207 85.12956 131.3455 1.167932 
108 102.10 106.35153 79.75878 141.8107 -4.251535 
109 114.41 107.15382 75.93778 151.2020 7.256179 
110 114.73 106.68603 72.02437 158.0286 8.043975 
111 87.98 100.68859 65.10369 155.7238 -12.708587 
112 85.29 98.57158 61.28103 158.5541 -13.281580 

 
6. Discussion of Results and Conclusion 
 

The forecast limits provide us with a clear measure of the uncertainty in the forecasts. It is easier to see that the 
forecast limits spread out and the forecast error increases in absolute value as we get further into the future. 
Updating the forecast once the observations at previous times have been observed, did not cause much change. 
(Example, updating ෡ܻ௧(݈) to ෠ܻ௧ା௟ିଵ(1) for ݈ > 1 when ௧ܻାଵ, ௧ܻାଶ, … , ௧ܻା௟ିଵhave been observed). Table 2 shows 
the actual values, forecast values and updated forecast values. The mean of the forecast errors before updating is   
-2.2956 and the mean after updating is -2.2716. 
 

Table 2: Forecasting Results 
 

Time Actual Forecast Forecast 
Update 

107 106.91 105.74207 105.74207 
108 102.10 106.35153 106.20250 
109 114.41 107.15382 107.67730 
110 114.73 106.68603 105.82694 
111 87.98 100.68859 99.55256 
112 85.29 98.57158 100.04824 

 
Talking about the prediction of direction of price movements, (whether the price of gold will increase or decrease 
at a particular time in the future) the fitted model was 66.67% correct. To get a more accurate forecast results, it is 
advisable to start from the scratch and fit a new model (if necessary) to a new data which contains currently 
observed gold prices. 
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Appendix 

 
Figure 4: Differenced Series of the Logs of Gold Price 

 

 
Figure 5: Estimated Spectrum for monthly gold returns 
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                    Figure 6: Best Subset ARMA model for Differenced of Log(Gold) 

 
         Figure 7: Residuals from the fitted ARIMA Model for Monthly Gold Prices 
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            Figure 8: Forecasts, Forecast Limits and Actual Monthly Gold Prices 

 

 

 

 

 

 

   


